
Using OpenSegment




Basics

OpenSegment is a simple to use 7-segment display. It has the ability to
communicate over serial, I C, SPI, as well as analog and counter modes. It
is super easy to use if you just need to display a number but have a lot of
features including setting brightness levels and individual segment control
built in.

OpenSegment displaying the number of speed bag hits.

The OpenSegment is the big brother to the Serial7Segment by Jim
Lindblom. Both products use the same firmware but have different
hardware layouts. Therefor, you can rely heavily on Jim’s datasheet for
Serial7Segment and all the example code located here.

Suggested Reading

Things you may need to know before working with one of these boards:

• Serial Communication
• JST Connectors
• Wire stripping
• Soldering

2

Page 1 of 8

Hardware Info

SparkFun boxes make great enclosures!

OpenSegment can be powered from 4V (less bright) to 12V, but we
recommend 5 to 6V. The default communication is 9600bps over serial.

Note: At any time the device can be reset to factory defaults (9600bps) by
tying the RX pin to GND and powering up the device. See the Factory
Reset section for more information.

The onboard regulator will regulate down to 5V. The regulator will protect
against shorts, reverse power, over current, and overheating. Powering the
board with more than 7V is ok, but the regulator will begin to dissipate the
extra power by heating up and–depending on the brightness setting and
input voltage–may cause the board to flicker.

The OpenSegment has an ATmega328 running a modified Optiboot
bootloader. It’s basically a little Arduino running at 8MHz. You can
reprogram the board using a standard serial connection. We always have
an FTDI basic handy to make code changes, but you shouldn’t ever have to
reprogram the display unless you really want to tweak the code.

Serial Communication

The serial connection pins

The easiest way to control OpenSegment is over serial. You need only 3
pins: PWR, GND and RX. The RX pin on OpenSegment should be
connected to the TX pin of your microcontroller.

Page 2 of 8

The basic 3 pins, ready for a JST connector

The easiest way to physically connect to OpenSegment is through a 3-pin
JST connector.

3-pin JST connector soldered in and ready to go!

Solder the JST onto the backpack, plug the JST cable in, and then plug the
red wire to 5V to 7V, black wire to GND, and yellow wire to the TX pin of
your development board.

Serial Example

Connect 3 wires to your Arduino

Using an OpenSegment display with Arduino is very straightforward. Power
the display from the 5V pin, GND, and connect the RX pin of the display to
pin 8 on the Arduino.

Here is a Codebender example to get you started immediately.

Page 3 of 8




 

S7S Example Serial Basic (https://codebender.cc/sketch:116057?
referrer=sparkfun) by sparkfun (https://codebender.cc/user/sparkfun?
referrer=sparkfun)

 Clone & Edit

(/?

referrer=sparkfun)

 Download

(https://codebende

referrer=sparkfun)

 Edit

Please select a board  

/*
 9­23­2012
 Spark Fun Electronics
 Nathan Seidle

 This code is public domain but you buy me a beer if you us

 Serial7Segment is an open source seven segment display.

 This is example code that shows how to display basic numbe

 Note: This code expects the display to be listening at 960
 do a software or hardware reset. See the Wiki for more inf
 http://github.com/sparkfun/Serial7SegmentDisplay/wiki/Spec

 To get this code to work, attached an Serial7Segment to an
 Pin 8 on Uno (software serial TX) to RX on Serial7Segment
 VIN to PWR
 GND to GND

*/

#include <SoftwareSerial.h>

SoftwareSerial Serial7Segment(7, 8); //RX pin, TX pin

int cycles = 0;

void setup() {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30




 

 To program your Arduino from your browser, please use

Google Chrome (http://www.google.com/chrome/)/Chromium

(version 41 and above on Linux) or Mozilla Firefox

(http://www.mozilla.org/en-US/firefox/) (32bit only on Windows).

Load the above example code onto your Arduino, and watch the display
count up!

You can find many more examples here on GitHub. There are sketches to
show you:

• Basic counting
• Controlling the colon and dots on a display
• Changing the mode
• Fun Predator mode
• Changing the baud rate
• Doing a software serial reset

I2C/SPI Communication
If you need to control lots of displays at the same time, OpenSegment has
the ability to communicate over I C and SPI.

I C Communication

I C communication requires 4 pins: SDA, SCL, PWR, and GND.

2

2

2

Page 4 of 8

The I C pins are labeled on the edge of the backpack and on the sides to
make it easier to chain many displays together.

The default 7-bit I C address is 113 in base10 or 0x71 in HEX or
01110001 in binary.

Heads up! 0x71 is the 7-bit I2C address. If you are using a different
language than Arduino you will probably need to add the Read/Write
bit to the end of the address. This means the default read address for
the OpenSegment is 0b.1110.0011 or 0xE3 and the write address is
0b.1110.0010 or 0xE2. For more information see our tutorial on I C

OpenSegment supports standard 100kHz as well as Fast 400kHz I2C
speeds. Use the following code to enable Fast I2C within Arduino:

Wire.begin(); //Join the bus as master.
//By default .begin() will set I2C SCL to Standard Speed mode
of 100kHz
Wire.setClock(400000); //Optional ­ set I2C SCL to High Speed
Mode of 400kHz

Checkout the I C examples on GitHub for good code to start from.

You can find many more I C examples here on GitHub. There are sketches
to show you:

• Basic counting
• Changing the I C Address
• Changing the brightness and other settings

SPI Communication

Bank of SPI pins

SPI communication requires 6 pins: SDO, SDI, SCK, CS, PWR, and GND.
We may add a feature in the future, but for now OpenSegment does not
pass data out of the SDO (serial data out) pin and can be left disconnected.

2

2

2

2

2

2

Page 5 of 8

If you’re hooking multiple OpenSegments together on the same SPI bus,
the CS pin on each display must be connected to a different GPIO on your
microcontroller.

You can find many more SPI examples here on GitHub. There are sketches
to show you:

• Basic counting
• Changing the brightness and other settings

Counter/Analog Modes
OpenSegment has three modes:

• Data mode (where you send commands and data over
Serial/SPI/I C)

• Counter mode (count up/down based on SDI/SDO)
• Analog meter mode (display analog voltages on A6/A7)

We’ve covered the basic data mode; let’s cover the other two modes.

To control the mode of the display, send the command 0x82 over serial
followed by:

• 0 for data mode
• 1 for analog meter mode
• 2 for counter mode

An example of how to do this over serial is available here.

You do not need to solder the jumper to control the mode. Please read the
solder jumper section below for more information.

Counter Mode

The counter jumper and the two pins that control the count.

When the display is in Counter mode, the display will increase by one every
time the SDI pin (i is for increase!) is pulled low and will decrease by one
every time the SDO pin is pulled low. This mode was created to monitor
and count the number of times a button is pressed or a reed switch is
closed. The display must be power cycled to reset the count.

Analog Meter Mode

2

Page 6 of 8

When the display is in Analog mode the instantaneous analog voltage on
pins A7 and A6 will be shown on the display with 1/10th volt resolution
(0.0V to 5.0V).

The voltage on A6 is displayed on the left and A7 is displayed on the right.
This mode was created to monitor basic voltages (0 to 5V) without the need
of a multimeter.

Solder Jumpers

You can use OpenSegment as a counter and as an analog meter without
any software configuration. By closing a solder jumper on the back of the
display OpenSegment will enter one of two modes: Counter or Analog
Meter mode.

Closing a solder jumper will override any software settings and will force the
display into that mode after power up. If both jumpers are closed the display
will startup in Counter mode.

Factory Reset
Have you forgotten what baud rate the device has been configured to?
Don’t worry! The device can be reset to factory defaults by tying the RX pin
to GND and then powering up the device.

Page 7 of 8

Once powered up you will see alternating - (dashes) and _ (underscores)
for 1 second.

Once you see a rotating display of 0-00 you will know the device has been
reset to 9600bps. You can now release the RX pin from ground, and the
display will continue to function normally.

There is also an example sketch to show you how to do a reset over serial.
This can be handy if the display is installed in an application and you can’t
pull the RX line low during power up.

Resources and Going Further
You should now be able to control the OpenSegment with serial and a few
other methods. Be sure to checkout the example code and datasheet for
more information.

Now that you’ve got the OpenSegment board figured out, you should
consider reading about:

• SPI Communication
• Buttons
• Pull-up resistors
• Learn how to use GitHub and help us make OpenSegment better by

requesting and adding new features!
• Build your own Reaction Timer, complete with OpenSegment display.

Page 8 of 8

8/4/2016https://learn.sparkfun.com/tutorials/using-opensegment/all

