Specification Sheet

BH-4001

High - Performance Plastic Optical Fiber
$E s k a^{T M}$

\author{

MITSUBISHI RAYON CO., LTD. ESKA OPTICAL FIBER DIVISION
 6-41 Kounan 1-Chome, Minato-ku, Tokyo, Japan
 | Phone | $:+81-3-5495-3060$ |
| :--- | :--- |
| Facsimile | $:+81-3-5495-3212$ |

}

1.Scope

scope
This specification covers basic requirements for the structure, optical and mechanical performances of BH-4001.
2.Structure

Table1
BH-4001

Item		Specification			
		Unit	Min.	Typ.	Max.
Optical Fiber	Core Material	-	Polymethyl - Methacrylate Resin		
	Cladding Material	-	Fluorinated Polymer		
	Core Refractive Index	-	1.49		
	Refractive Index Profile	-	Step Index		
	Numerical Aperture	-	0.58		
	Core Diameter	mm	920	980	1040
	Number of Core		1		
	Cladding Diameter	mm	940	1,000	1,060
Jacket	Material and Color	-	Cross-linked Polyethylene : Black		
	Diameter	mm	2.13	2.20	2.27
	Indication on the Jacket	-	None		
Approximate Weight		g / m	3.9		

Sectional View

Table2

Item		Acceptance Criterion and / or [Test Condition]	Specification				
		Unit	Min.	Typ.	Max.		
Maximum Rating	Storage Temperature		No Physical Deterioration [in a Dry Atmosphere]	${ }^{\circ} \mathrm{C}$	-55	-	+ 105
	Operation Temperature	No Deterioration in Optical Properties* [in a Dry Atmosphere]	${ }^{\circ} \mathrm{C}$	-55	-	+ 105	
		No Deterioration in Optical Properties** [under $95 \% \mathrm{RH}$ condition]	${ }^{\circ} \mathrm{C}$	-	-	+ 85	
Optical Properties	$\begin{aligned} & \text { Transmission Loss } \\ & \text { (} 650 \mathrm{~nm} \\ & \text { Collimated Light) } \end{aligned}$	[$25^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$]	dB/km	-	-	200	
		Operation Temperature	dB/km	-	-	250	
Mechanical Characteristics	Minimum Bend Radius	Loss Increment $=<0.5 \mathrm{~dB}$ [A Quarter Bend]	mm	25	-	-	
	Repeated Bending Endurance	Loss Increment $=<1 \mathrm{~dB}$ [in Conformity to the JIS C 6861]	Times	1,000	-	-	
	Tensile Strength	[Tensile Force at 5% Elongation; in Conformity to the JIS C 6861]	N	70	-	-	
	Twisting Endurance	Loss Increment $=<1 \mathrm{~dB}$ [Sample Length : 1 m Tensile Force : 4.9 N]	Times	5	-	-	
	Impact Endurance	Loss Increment $=<1 \mathrm{~dB}$ [in Conformity to the JIS C 6861]	Nm	0.2	-	-	

All tests are carried out under temperature of $25^{\circ} \mathrm{C}$ unless otherwise specified.

* Attenuation changeshall be within +-10 \% of the specification (operation temperature) after 1,000 hours. (According to our test method)
** Attenuation changeshall be within $+-10 \%$ of the specification (operation temperature) after 1,000 hours, except that due to absorbed water. (According to our test method)

