Features

- Completely Alignment-free
- PLL Demodulator for FM Intercarrier Sound IF Signals (Mono)
- Two Audio Switches
- Very Few External Components
- Volume Control by DC Voltage
- Supply Voltage: 5V

- Pb-free Package, which is Compliant with Requirements of RoHS

1. Description

The U2861B is an alignment-free FM sound IF demodulator for all TV standards from 4.5 MHz up to 6.5 MHz (standard M, N, B/G, I, D/K). The circuit includes two switchable audio inputs and volume control. With a supply voltage of 5 V , the U2861B is suitable for TV, VCR and Multimedia applications.

Figure 1-1. Block Diagram

2. Circuit Description

Sound IF Limiter Amplifier
The intercarrier signal coming from the sound filter is fed to a 7 -stage limiter amplifier. This guarantees high input sensitivity and excellent AM suppression.

2.1 PLL - FM Demodulator

The alignment-free "Phase-Locked-Loop" (PLL) FM demodulator covers a wide frequency range of 4.5 MHz up to 6.5 MHz with excellent noise performance.

Due to the fact that the voltage-to-frequency characteristic is linear, a low harmonic distortion can be achieved. The free-running frequency of the internal VCO circuit is about 5.5 MHz .

The demodulated FM signal is led via de-emphasis and buffered to pin 12. The de-emphasis low-pass filter consists of an internal $5-\mathrm{k} \Omega$ series resistor and an external capacitor at pin 14. The FM muting is possible by switching pin 5 to ground.

2.2 Audio Switch 1

The first audio switch (pin 13) has inputs for the demodulated FM signal and the external AF1 signal from pin 1.

For multistandard purposes, it is possible to handle internal FM and external AM audio signals. The output of switch1 is also permanently available at pin 12 (e.g., for SCART interface).

2.3 Audio Switch 2 and Volume Control

The second audio switch (pin 11) has inputs for the audio signal from switch 1 and the external AF2 signal at pin 10. The switched AF signal is fed to volume control. The output voltage can be controlled by a DC voltage at pin 9 .

2.4 Internal Voltage Stabilizer

The internal band-gap reference ensures constant performance independent of supply voltage and temperature.

3. Pin Configuration

Figure 3-1. \quad Pinning

Table 3-1. Pin Description

Pin	Symbol	Function
1	VI,AF1	Audio input 1 (e.g., AM signal)
2	CDEC	Decoupling capacitor
3	VI,SIF	FM sound IF input
4	GND	Ground
5	VMUTE	FM mute switch
6	CREF	Internal reference voltage
7	VS	Supply voltage
8	VO,AF2	Switched audio output 2
9	VVOL	Volume control
10	VI,AF2	Audio input 2 (e.g., from SCART)
11	VSW2	Audio switch 2
12	VO,AF1	Switched audio output 1
13	VSW1	Audio switch 1
14	CDEM	De-emphasis and mute switch

4. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Reference point pin 4, unless otherwise specified.

Parameters	Pin	Symbol	Value	Unit
Supply voltage SO14 package	7	V_{S}	6.0	V
Supply current	7	$\mathrm{I}_{\text {S }}$	25	mA
Power dissipation $V_{S}=6 \mathrm{~V}$		P	150	mW
Output currents	8, 12	$\mathrm{I}_{\text {out }}$	1.0	mA
External voltages	$\begin{gathered} 1,2,3,5,6,8,9 \\ 10,12,13,14 \end{gathered}$	$\mathrm{V}_{\text {ext }}$	+4.5	V
	11		+12.0	V
Junction temperature		T_{j}	+125	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
Electrostatic handling ${ }^{(1)}$	All	$\mathrm{V}_{\text {ESD }}$	± 200	V

Note: 1. Equivalent to discharging a $200-\mathrm{pF}$ capacitor through a $0-\Omega$ resistor

5. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient when soldered to PCB SO14 package	$\mathrm{R}_{\mathrm{thJA}}$		K/W

6. Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$; reference point pin 4, unless otherwise specified.

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
DC Supply (Pin 7)						
Supply voltage SO14 package		V_{S}	4.5	5.0	6.0	V
Supply current		I_{S}		20	25	mA
FM Sound IF Input (Pin 3)						
Input limiting voltage, RMS value	AF output signal at pin 8 and pin12: -3 dB	$\mathrm{V}_{\mathrm{i}, \mathrm{SIF}}$			150	$\mu \mathrm{V}_{\text {RMS }}$
DC input voltage		V_{DC}		1.7		V
Input resistance	(1)	$\mathrm{R}_{\text {in }}$		600	750	Ω
Input capacitance	(1)	$\mathrm{C}_{\text {in }}$		1.5		pF

FM - PLL

Free-running frequency		$\mathrm{f}_{\mathrm{vco}}$		5.5		MHz
Oscillator drift (free running) as function of temperature	$\Delta \mathrm{T}=55^{\circ} \mathrm{C}$	$\Delta \mathrm{f}_{\mathrm{vco}}$		500		kHz
Oscillator shift (free running) as function of supply voltage	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{s}}<\mathrm{V}_{\mathrm{S}, \max }$	$\Delta \mathrm{f}_{\mathrm{vco}}$		200		kHz
Capture range of PLL		$\Delta \mathrm{f}_{\text {cap }}$	± 1.4	± 1.9		MHz
Holding range of PLL		$\Delta \mathrm{f}_{\text {hold }}$	± 2.0	± 2.5		MHz

Decoupling Capacitor (Pin 2)

Value of decoupling capacitor		$\mathrm{C}_{\text {dec }}$	2.2	$\mu \mathrm{F}$
De-emphasis Capacitor (Pin 14)				
Value of de-emphasis capacitor	$\tau=50 \mu \mathrm{~s}$	$\mathrm{C}_{\text {dem }}$	10	nF

Audio Output 2 (Pin 8)

DC output voltage		$V_{D C}$		2.2		V
Output resistance		$\mathrm{R}_{\text {out }}$		130		Ω
AC output peak current		$\mathrm{I}_{\text {AC }}$			± 1.0	mA
DC output current		I_{DC}			-1.2	mA
AF output voltage, RMS value	$\begin{aligned} & \mathrm{V} \text { in }=10 \mathrm{mV}, \mathrm{f}=5.5 \mathrm{MHz} \\ & \mathrm{FM}-\text { deviation }=27 \mathrm{kHz} \\ & \mathrm{f}_{\text {mod }}=1 \mathrm{kHz} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{o}, \mathrm{AF} 2}$		500		$m V_{\text {RMS }}$
Total harmonic distortion	$\begin{aligned} & \mathrm{V} \text { in }=10 \mathrm{mV}, \mathrm{f}=5.5 \mathrm{MHz} \\ & \mathrm{FM}-\text { deviation }=27 \mathrm{kHz} \\ & \mathrm{f}_{\text {mod }}=1 \mathrm{kHz} \end{aligned}$	THD		0.1	0.5	\%
AM suppression	$\mathrm{V}_{\text {in }}=10 \mathrm{mV}, \mathrm{f}=5.5 \mathrm{MHz}, \mathrm{f}_{\text {mod }}=1 \mathrm{kHz}$ Reference signal: FM -deviation $=27 \mathrm{kHz}$ Test signal: $\mathrm{m}=30 \%$	$\mathrm{a}_{\text {AM }}$	42	60		dB
Supply voltage ripple rejection	$\mathrm{V}_{\text {RR }}<200 \mathrm{mV}$, f $=70 \mathrm{~Hz}$	RR		30		dB

Notes: 1. This parameter is given as application information and is not tested during production.
2. Without external control voltage at pin 13 , the internal $F M$ is demodulated.
3. Without control voltage at pin 11 , the audio signal from switch 1 is automatically selected. With $\mathrm{V} 11<1.5$ or $\mathrm{V} 11>4.0 \mathrm{~V}$ input pin 10 is selected.
6. Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$; reference point pin 4 , unless otherwise specified.

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Audio Input 1 (Pin 1)						
Input resistance		$\mathrm{R}_{\text {in }}$		50		$\mathrm{k} \Omega$
Internal DC bias voltage		$V_{\text {DC }}$		3.0		V
AF1 input signal		$\mathrm{V}_{\mathrm{i}, \mathrm{AF} 1}$			900	$m V_{\text {RMS }}$
Mode Selection Audio Switch 1 (Pin 13)						
Control voltage for: FM demodulated signal External signal AF1	(2)	$\mathrm{V}_{\text {sw1 }}$	$\begin{gathered} 2.0 \\ 0 \end{gathered}$		$\begin{aligned} & 4.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Switching current		$\mathrm{I}_{\text {sw1 }}$			70	$\mu \mathrm{A}$
Audio Input 2 (Pin 10)						
Input resistance		$\mathrm{R}_{\text {in }}$		50		$\mathrm{k} \Omega$
Internal DC bias voltage		$V_{D C}$		3.0		V
AF2 input signal		$\mathrm{V}_{\mathrm{i}, \text { AF2 }}$			900	$m V_{\text {RMS }}$
Audio Output 1 (Pin 12)						
DC output voltage		V_{DC}		2.3		V
AF output voltage		$\mathrm{V}_{\mathrm{o}, \mathrm{AF}}$		500		mV RMS
Output resistance		$\mathrm{R}_{\text {out }}$		130		Ω
Mode Selection Audio Switch 2 (Pin 11)						
Control voltage for: External signal AF2 Signal from switch 1 Signal from switch 1	(3)	$\mathrm{V}_{\text {sw }}$	$\begin{gathered} 0 \\ 4.0 \end{gathered}$	2.8	$\begin{gathered} 1.5 \\ 12.0 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
Switching current		$\mathrm{I}_{\text {sw }}$			60	$\mu \mathrm{A}$
Volume Control (Pin 9)						
AF control range		$\Delta \mathrm{AF}$		80		dB
Control voltage: Minimal volume Maximal volume		$\mathrm{V}_{\mathrm{vol}}$	0	4	4.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Mute Switch (Pin 5)						
Control voltage for "mute off"	AF "on"	$V_{\text {mute }}$	2.1	2.9	4.5	V
Control voltage for "mute on"	AF "off"	$V_{\text {mute }}$	0		1.5	V

Notes: 1. This parameter is given as application information and is not tested during production.
2. Without external control voltage at pin 13, the internal FM is demodulated.
3. Without control voltage at pin 11, the audio signal from switch 1 is automatically selected. With $\mathrm{V} 11<1.5$ or $\mathrm{V} 11>4.0 \mathrm{~V}$ input pin 10 is selected.

Figure 6-1. Test Circuit

Figure 6-2. Basic Application Circuit

7. Internal Pin Configuration

Figure 7-1. Audio Input 1 (Pin 1)

Figure 7-2. Decoupling Capacitor (Pin 2)

Figure 7-3. FM Sound IF Input (Pin 3)

Figure 7-4. Internal Reference Voltage (Pin 6)

Figure 7-5. Audio Output 2 (Pin 8)

Figure 7-6. Volume Control (Pin 9)

Figure 7-7. Audio Input 2 (Pin 10)

Figure 7-8. Audio Switch 2 (Pin 11)

Figure 7-9. Audio Output 2 (Pin 12)

Figure 7-10. Switch 1 (Pin 13)

Figure 7-11. De-emphasis (Pin 14)

Figure 7-12. Mute switch (Pin 5)

8. Ordering Information

Extended Type Number	Package	Remarks	Standard Package Quantity
U2861B-MFPG3Y	SO14, Pb-free	Taped and reeled	4,000
U2861B-MFPY	SO14, Pb-free	Tube	3,100

9. Package Information

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
$\mathrm{CH}-1705$ Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© Atmel Corporation 2005. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$ and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

